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Abstract

A computer tomography based methodology is applied to determine the transport properties of fluid flow across porous media. A 3D
digital representation of a 10-ppi reticulate porous ceramic (RPC) sample was generated by X-ray tomographic scans. Structural prop-
erties such as the porosity, specific interfacial surface area, pore-size distribution, mean survival time, two-point correlation function s2,
and local geometry distribution of the RPC sample are directly extracted from the tomographic data. Reference solutions of the fluid
flow governing equations are obtained for Re = 0.2–200 by applying finite volume direct pore-level numerical simulation (DPLS) using
unstructured, body-fitted, tetrahedral mesh discretization. The permeability and the Dupuit–Forchheimer coefficient are determined
from the reference solutions by DPLS, and compared to the values predicted by selected porous media flow models, namely: con-
duit-flow, hydraulic radius theory, drag models, mean survival time bound, s2-bound, fibrous bed correlations, and local porosity the-
ory-based models. DPLS is further employed to determine the interfacial heat transfer coefficient and to derive a corresponding Nu-
correlation, which is compared to empirical correlations.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Porous media; Tomography; Pore-level; Numerical simulation; Permeability; Dupuit–Forchheimer; Heat transfer coefficient
1. Introduction

Reticulate porous ceramics (RPCs) have drawn attention
for applications as porous radiant burners (Howell et al.,
1999; Brenner et al., 2000; Talukdar et al., 2004), as filters
(Setten et al., 1999), as catalyst carriers for autothermal
reformers (Dhamrat and Ellzey, 2005), and more recently
0142-727X/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Abbreviations: CT, computer tomography; DPLS, direct pore-level
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as volumetric radiant absorbers in solar thermal (Fend
et al., 2004) and solar thermochemical applications (Stein-
feld and Palumbo, 2001; Petrasch and Steinfeld, 2005).
These types of structures are advantageous as heat exchang-
ers and catalyst supports for high temperature applications
because of their high specific surface area and temperature
stability. RPCs made of silicon carbide foams and coated
with Rh catalyst are currently being employed for the solar
steam reforming of hydrocarbons in the framework of the
EU-project SOLREF (Petrasch and Steinfeld, 2005). A sam-
ple of this RPC is used in the present study; still, the method-
ology presented is of general applicability to porous media.

Averaging models are often applied to solve the problem
of fluid flow across porous media (Whitaker, 1999; Kavi-
any, 1995). However, their accuracy strongly depends on
the determination of the effective transport properties, such

mailto:aldo.steinfeld@eth.ch


Nomenclature

Latin symbols

A0 interfacial surface area per unit solid volume
(m�1)

Asf solid–fluid interface area (m2)
c0 dimensionless inverted permeability (�)
c1 dimensionless Dupuit–Forchheimer coefficient

(�)
d diameter (m)
d0, d1, d2, d3 coefficients of Nusselt correlations (�)
dmm mean diameter of macropores (m)
dms mean diameter of longitudinal strut pores (m)
dnom nominal pore diameter (m)
ds separation length scale (m)
F Dupuit–Forchheimer coefficient (m�1)
F(d) cumulative pore size distribution (�)
f(d) pore size distribution (m�1)
h interfacial heat transfer coefficient (W/(m2 K))
K permeability (m2)
kf fluid thermal conductivity (W/(m K))
kK Kozeny constant
k4, k5 empirical constants for fibrous bed correlations
L edge length of cell
M set for solid matrix space
Nu Nusselt number Nu = hdnom/kf

p pressure (N/m2)
p(L) fraction of percolating cells
P set for pore space
Pe Peclet number Pe = RePr

Pr Prandtl number Pr = lcp/kf

_q000 volumetric heat source (W/m3)
r radius (m)
Re Reynolds number Re = quDdnom/l
S set for porous medium space
s specific surface (m�1)bs directional vector
s2(r) two-point correlation function (�)
T temperature (K)
Tmf energy weighted mean fluid temperature (K)
Tsf solid fluid interface temperature (K)
uD Darcean velocity (superficial velocity average)

(m/s)
V volume (m3)
x point in porous medium space

Greek symbols

d(Æ) Dirac delta distribution
DTlm logarithmic mean temperature (K)
e porosity (–)
k fraction of percolating cells
l dynamic viscosity (kg/(m s))
lg(e, s,L) local geometry distribution
lp(e,L) local porosity distribution
Ppg dimensionless pressure gradient (�)
q density (kg/m3)
s mean survival time (s)
v(x) solid-pore space indicator function
w Gray value
w0 solid-pore space separation gray value
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as the permeability and the Dupuit–Forchheimer coeffi-
cient, obtained from the geometrical and statistical charac-
teristics of the porous media. Kaviany (1995), Dullien
(1979), and Hilfer (1996) give summaries on the methods
involved. Conduit flow models are best suited for low poros-
ity materials, as indicated by Dullien (1979). In contrast,
models based on flow around objects, where the Navier–
Stokes equations are solved for flow around periodic
arrangements of objects, e.g. spheres or cylinders, are best
suited for high porosity materials and have been applied
by Kuwabara (1959), Sparrow and Loeffler (1959), and
Happel and Brenner (1986). Hydraulic radius models are
based on the concept of hydraulic radius introduced by
Carman (1937). Models for high Reynolds number flows

have been brought forward by Ergun (1952) and Ward
(1964) to obtain correlations for the Dupuit–Forchheimer
coefficient. Two-point correlation bounds for the permeabil-
ity have been proposed by Berryman and Milton (1985).
Torquato (1990) has introduced permeablility bounds based

on the mean survival time s of diffusing particles in the fluid
phase. More recently application of the local porosity the-

ory has been proposed by Hilfer (1996, 2002).
On the other hand, the direct pore-level numerical sim-
ulation (DPLS) of the fluid flow governing equations has
become feasible with the advent of high performance com-
puters and the ability to obtain a reasonably good geomet-
rical representation of the porous matrix, e.g. by high
resolution computer tomography (CT). Besides the under-
lying assumptions of the Navier–Stokes equations, no sim-
plifications are necessary. Within the limits of the
numerical truncation error (i.e., mesh refinement) and the
accuracy of geometrical representation (i.e., statistical vari-
ations), DPLS approaches the exact solution. DPLS of
flow in idealized unit-cells of metal-foams have been
accomplished by Boomsma et al. (2003) and by Krishnan
et al. (2006). CT based methods have been applied in fluid
engineering applications: Pore-size distributions have been
inferred from tomographic data and applied to network
models by Vogel and Roth (2001). Lineal path length dis-
tributions were determined from tomographic data by Rin-
toul et al. (1996). Tomography based DPLS in sand-stones
has been performed using Lattice-Boltzmann and finite dif-
ference methods by Manwart et al. (2002). Lattice-Boltz-
mann simulation of melt flow in natural partially molten
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basaltic magmas has been performed by Hersum et al.
(2005).

In the present paper, CT is carried out on the RPC sam-
ple to generate its 3D pore-level digital representation,
from which the structural properties (e.g. porosity and spe-
cific surface area) are derived. Subsequently, finite volume
based DPLS of the fluid flow is performed to obtain the
‘‘exact’’ reference solution and to determine the permeabil-
ity and the Dupuit–Forchheimer coefficient. These are
compared to the values predicted by effective property
models for porous media. Finally, DPLS is further used
to determine the interfacial heat transfer coefficient and a
corresponding Nu-correlation; the latter is compared to
experimental correlations.
2. Determination of RPC properties by CT

A 10 ppi (pores per inch) RPC sample is shown in Fig. 1.
It is subjected to a polychromatic X-ray tomographic scan
with a digital resolution of 30 · 30 · 30 lm, using the
MicroCT 80 scanner of Scanco Medical. Details of the
experimental procedure have been presented in earlier
work (Petrasch et al., 2007a).

A cubical 1120 · 1120 · 1098 voxel subset is extracted
from the CT data of the undisturbed pore-space. Solid-void
segmentation using the matrix-pore separation gray value
W0 is carried out according to the method of modes (Wes-
zka, 1978). The data is further processed (Petrasch et al.,
2007a) to finally obtain a continuous representation of
the interface, expressed as an iso-surface:

wðxÞ ¼ w0 ð1Þ

A porous medium is commonly defined as a compact set S

in R3 consisting of two complementary sets: P representing
the pore space and M representing the solid matrix. The
pore space indicator function v(x) is defined as
Fig. 1. Photograph of the scanned 10 ppi RPC sample.
vðxÞ :¼
1 if x 2 P

0 if x 2 M

�
ð2Þ

Based on Eqs. (1) and (2) can be rewritten as:

vðxÞ :¼
1 if wðxÞ < w0

0 if wðxÞP w0

�
ð3Þ

Porosity – The porosity e is defined as the volume fraction
of the pore space relative to the total volume of the porous
medium,

etot ¼
V ðP Þ
V ðSÞ ¼

R
s vðxÞdV

V ðSÞ ð4Þ

For a homogeneous medium, e converges to a constant va-
lue as the size of the porous domain S is increased. For the
10 ppi RPC samples, porosity fluctuations are below 2%
when L/dnom > 3.5 (Petrasch, 2007; Petrasch et al.,
2007a,b). In an analogous manner, the effective porosity e
is defined as the volume fraction of the connected pore
space relative to the total volume of the porous medium.
Pores that are completely enclosed by the solid matrix
(i.e., not connected to the pore space) do not contribute
to the fluid flow regime. They are therefore eliminated from
the pore space and treated as part of the solid matrix. Thus,
Eq. 4 is applied with an adjusted v(x). Connectivity analy-
sis of the CT data yields etot = 0.85805 and e = 0.85796.
Thus, only about 0.01% of the pore volume is occupied
by unconnected pores. Their influence can be neglected.

Specific surface – The specific surface s is the ratio
between the interfacial area and the total volume of the
porous medium.

s ¼ AsfðSÞ
V ðSÞ ð5Þ

It can be calculated using either the Cauchy–Crofton theo-
rem (doCarmo, 1976) or the derivative of the two-point
correlation (see below). Using the latter method, the spe-
cific surface based on the raw data is stot = 1062.08 m�1,
and the effective specific surface based on the connected
pores only is s = 1048.31 m�1. The difference is 1.3%. Note
that s accounts for structural features as small as the reso-
lution of the tomographic scans. Smaller geometry features
may be relevant for chemical/adsorption processes, but
they do not influence the fluid flow since they are usually
smaller than the boundary layer.

Pore size – The pore size distribution can be defined
based on volume-to-surface ratios or areas of intersected
pores (Murphy et al., 1977). It can also be defined based
on cord length distributions (Jongerius et al., 1972), where
cords are segments formed by the intersections of arbi-
trarily placed and oriented lines with the interface between
phases.

In the present work, a pore size is associated with each
point in the pore space. The pore size is defined as the
diameter of the largest ball which includes this point and
fits completely within the pore space (Vogel, 1997). The
opening size distribution corresponds to this definition of
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pore size. An opening is an operation of mathematical
morphology, consisting of an erosion followed by a dilation

using the same structuring element, thus eliminating all
geometrical features smaller than the structuring element.
Openings were carried out in the 3D image of the CT data,
with spherical balls as structuring elements. Because of
computing constraints, the 1120 · 1120 · 1098 voxel data-
set is re-binned to a 560 · 560 · 549 voxels grid for a struc-
turing element diameter d between 0 and 3.4 mm, and to a
373 · 373 · 366 voxels grid for diameters greater than
3.4 mm. The opening size distribution f(d) and the cumula-
tive opening size distribution F(d) of the RPC sample are
shown in Fig. 2.

f(d) exhibits two distinct maxima. The first maximum
around d = 0.18 mm is associated with the typical diameter
of the small longitudinal pores at the center of the RPC
struts. The second maximum around d = 3.2 mm is associ-
ated with the diameter of the macroscopic pores of the
RPC. The two length scales are clearly separated. The sep-
aration length scale ds is introduced at the minimum
between the two peaks; ds = 0.42 mm. The mean pore
diameter of the longitudinal pores dms, and the mean pore
diameter of the macroscopic pores dmm are defined

dms ¼
R ds

0
df ðdÞddR ds

0
f ðdÞdd

ð6Þ

dmm ¼
R1

ds
df ðdÞddR1

ds
f ðdÞdd

ð7Þ

Since f(d) = 0 for d larger than the largest pore, integration
in Eq. (7) is performed from ds to infinity. For our RPC
sample, dms = 0.162 mm and dmm = 3.01 mm. The nominal
pore diameter, reported by the manufacturer in pores per
linear inch, is dnom = 2.54 mm. Howell et al. (1999) found
significant deviations of the measured mean pore size from
Fig. 2. Pore size distribution and cumulative pore size distribution of the
scanned RPC material. ds is the separation length scale, dms is the mean
diameter of the small longitudinal pores, dmm is the mean diameter of the
macroscopic pores, and dnom is the nominal pore size.
the ppi values reported by manufacturers. Since dmm is not
readily available, all results will be normalized by dnom.
Note that dmm is a more accurate measure and results
should be scaled accordingly if available.

Survival time – The trapping rate, or its inverse, the
mean survival time s of particles in the fluid phase has been
used by Rintoul et al. (1996) to obtain estimates of the per-
meability based on tomographic data. s is defined as the
average time a particle diffusing in the fluid phase, with a
uniformly distributed source of particles and constant dif-
fusion coefficient D, survives until it is trapped in the trap-
ping solid phase. sD is calculated by simulating 106 particle
trajectories based on three-dimensional random walk with
Gaussian distributed step-length (Kinzelbach and Rausch,
1995). The mean step length is chosen as 1.5 · 10�5 m,
hence smaller than the resolution of the tomographic scan.
For our RPC sample, sD = 3.73 · 10�7 m2. The scalar
properties determined for our RPC sample using CT are
listed in Table 1.

The 2-point correlation function – The s2 correlation
function and its application to porous media flow has been
discussed previously (Berryman and Milton, 1985; Berry-
man and Blair, 1986). For homogeneous and isotropic
media, it is defined as:

s2ðrÞ ¼
R

S

R
4p vðxÞvðxþ rŝÞdXdV

V ðSÞ4p
ð8Þ

The most important properties of s2 are:

s2ð0Þ ¼ e

lim
r!1

s2ðrÞ ¼ e2

ds2

dr

����
r¼0

¼ � s
4

ð9Þ

s2(r) is inferred from tomographic data using Monte Carlo
(MC) sampling. It is assumed that the porous structure is
symmetrically continued in all directions, as depicted in
Fig. 3. The two-point correlation calculated for the RPC
sample is shown in Fig. 4.

Local porosity – Local porosity theory (LPT) consists of
an approach introduced for the scale-dependent descrip-
tion of porous medium (Hilfer, 1991, 2002). It was applied
for the prediction of its effective conductivity (Widjajaku-
suma et al., 2003). Porosity and specific surface area are
computed for a large number N of non-overlapping cubic
measurement cells with edge length L to obtain a set of
Table 1
Scalar properties of the RPC sample

Scalar property Units Total Effective

e – 0.85805 0.85796
S m�1 1062.08 1048.31
sD m2 3.73 · 10�7

�d m 3.01 · 10�3

�ds m 1.62 · 10�4

ds m 4.20 · 10�4

dnom m 2.54 · 10�3



Fig. 3. Symmetric porous medium assumption for the determination of
s2(r) from CT data using Monte Carlo. The medium is periodic for twice
the edge length of the unit cell.

Fig. 4. Two-point correlation function of the RPC sample.

Fig. 5. Total fraction of percolation cells as a function of the normalized
edge length of the measurement cell. Indicated are the percolation length
Lp, the saturation length Ld, and the length scale at which the reference
permeability is exactly predicted.

Fig. 6. Distribution of the local porosity as a function of the porosity for
the RPC sample. The normalized edge length is the parameter.
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N realizations ei and si. The local porosity and local geom-
etry distributions are then defined as:

lpðe; LÞ ¼
1

N

XN

i¼1

dðe� eiÞ ð10Þ

lgðe; s; LÞ ¼
1

N

XN

i¼1

dðe� eiÞdðs� siÞ ð11Þ

where d is the Dirac delta function. The connectivity of the
pore space is given by the local connectivity indicator
function,

Kðx; LÞ ¼ 1 if cell with edgelength L percolates in all

coordinate directions

Kðx; LÞ ¼ 0 otherwise

ð12Þ

A cell percolates in a coordinate direction if there exists a
connected path in the pore space between two points on
the opposite boundary faces perpendicular to the coordi-
nate direction. One obtains a set of N realizations Ki.
The local percolation probability is defined as
kðe; s; LÞ ¼
PN

i¼1Kidðe� eiÞdðs� siÞPN
i¼1dðe� eiÞdðs� siÞ

ð13Þ

The total fraction of percolating cells is then

pðLÞ ¼
Z 1

0

Z 1

0

lðe; s; LÞkðe; s; LÞdsde ¼ 1

N

XN

i¼1

Ki ð14Þ

p(L) computed for the RPC sample is plotted in Fig. 5 as a
function of the normalized edge length. The statistical vari-
ations for large measurement cells are due to the fact that
the number N of non-overlapping cells reduces as the cell
size increases. The saturation length Ld is determined as
the first intersection point between p(L) and pd = 1 � n,
with n = 0.001. The percolation length Lp is defined by:

d2p

dL2

����
L¼Lp

¼ 0 ð15Þ

Lp is found from the numerical derivative of p(L) after a 7-
point Savitzky–Golay smooth (MATLAB, 2005). The local



320 J. Petrasch et al. / Int. J. Heat and Fluid Flow 29 (2008) 315–326
porosity distributions lp(e,L) for L/dnom = 0.12, 0.47, 0.71,
and 0.94 are plotted in Fig. 6 as a function of the porosity.
As expected, one observes:

lim
L!1

lpðe; LÞ ¼ dðe� e1Þ

lim
L!0

lpðe; LÞ ¼ ð1� eÞdðeÞ þ edðe� 1Þ
ð16Þ
3. Volume averaging and effective property models

Darcy’s law for isotropic porous media is given by
(Darcy, 1856)

rp ¼ � l
K

uD ð17Þ

The Darcean velocity, ud, is the superficial volume average
of the velocity: uD ¼

R
V u dV =V , where V is a representative

volume element (solid and fluid phase) of the porous med-
ium. At higher superficial fluid velocities uD (Red > 1), an
additional quadratic term was proposed by Dupuit (1863)
and Forchheimer (1901)

rp ¼ � l
K

uD � F qu2
D ð18Þ

The linear term results from viscous effects, which are pre-
dominant at low Re numbers. The quadratic term results
from inertial effects. A volume averaging study by Douglas
and Huiping (1992) indicates that microscopic inertial ef-
fects distort the velocity and pressure fields, which in turn
lead to Forchheimer effects. Non-dimensionalization for
the 1D isotropic case yields:

Ppg ¼ �c0 � c1Red ð19Þ
where Ppg ¼ Dpd2=luD is the dimensionless pressure gradi-
ent, d is a characteristic length-scale (usually the average or
nominal pore diameter), and Red is the Reynolds number
based on d. Hence, c0 is the inverse dimensionless perme-
ability and c1 is the dimensionless Dupuit–Forchheimer
coefficient,

c0 ¼
d2

K
; c1 ¼ dF ð20Þ

The rate of heat transferred between the porous matrix and
the fluid by convection is given by:

_qm ¼ hsðT sf � T mfÞ ð21Þ
where h is the interfacial heat transfer coefficient, s is the
specific surface area, Tsf is the area average of the solid–
fluid interface, and Tmf is the mean (or bulk) mass flow-
averaged fluid temperature (Incropera and DeWitt, 1996).
Interfacial heat transfer coefficients are usually reported
in the form of empirical Nusselt correlations, e.g.

Nu ¼ d0 þ d1Red2 Prd3 ð22Þ
A number of models for the prediction of K and F as func-
tions of the effective porosity and specific surface area are
examined.

Conduit flow – According to Kaviany (1995) for a
Hagen–Poiseuille flow,
KC ¼
ed2

32
ð23Þ

Since the hydraulic radius is chosen for the pore diameter,
d

KC ¼
e3

2s2
ð24Þ

Hydraulic radius model – This semi-heuristic model is based
on the Carman–Kozeny equation (Kaviany, 1995; Dullien,
1979),

KCK ¼
e3

kKð1� eÞ2A0

¼ e3

kKs2
ð25Þ

where A0 is the specific surface area based on the solid vol-
ume, and kK is the Kozeny constant, approximated as 5. A
discussion of this constant can be found in Happel and
Brenner (1986).

Models for fibrous beds – Empirical correlations for the
permeability of fibrous beds have been proposed by Davies
(Dullien, 1979)

KDa ¼
d2

f

64ð1� eÞ3=2ð1þ 56ð1� eÞ3Þ
ð26Þ

where df is the fiber diameter, and by Chen (1955):

KCh ¼
pd2

f lnðk5=ð1� eÞ2Þ
4k4

e
ð1� eÞ ð27Þ

where the empirical parameters k4 = 6.1 and k5 = 0.64.
Kyan et al. (1970) derived a porosity dependent expression
for the Kozeny constant,

kK ¼
ð62:3N 2

eð1� eÞ þ 107:4Þe3

16e6ð1� eÞ4

where N e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

1� e
� 2:5:

r ð28Þ

Drag models – The free surface model by Happel and Bren-
ner (1986) for parallel flow along cylinders gives,

kK ¼
2e3

ð1� eÞ 2 ln 1
1�e

� �
� 3þ 4ð1� eÞ � ð1� eÞ2

� � ð29Þ

For packed beds of spheres of e = 0.85, kK = 9.6096. For
the random arrangement of cylinders of e = 0.85.
kK = 8.0506.

Empirical model for cellular foams – Moreira et al. (2004)
proposed an empirical expression for K:

KMo ¼
e3d0:264

c

1:36� 108ð1� eÞ2
ð30Þ

where dc is the cellular diameter. In the present work,
dc = dnom.

Mean survival time – According to Torquato (1990), a
rigorous bound for K is given by:

Ks 6 eDs ð31Þ



Table 3
Model predictions for the Dupuit–Forchheimer coefficient

Model Symbol F

(m�1)
c1(�) Deviation from Fref

(%)

DPLS Fref 444.02 1.128 0.0
Ergun/Macdonald FE 497.98 1.265 +12.15
Ward FW 1495.2 3.798 +236.74
Empirical, cellular

foams
FMo 964.4 2.450 +117.2

J. Petrasch et al. / Int. J. Heat and Fluid Flow 29 (2008) 315–326 321
where D is the diffusion coefficient and s is the mean sur-
vival time of a fluid particle undergoing diffusion in the
fluid phase. The product Ds is constant for a given porous
geometry.

Two-point correlation bound – Berryman and Milton
(1985) and Berryman and Blair (1986) presented a rigorous
permeability bound, depending on the two-point correla-
tion function s2(r) and the porosity e:

Ks2 6
2

3

Z 1

0

rðs2ðrÞ � e2Þ
ð1� eÞ2

dr ð32Þ

If the two-point correlation is approximated by two
straight lines then, Eq. (32) reduces to:

�s2ðrÞ ¼ e� 1

4
sr where 0 < r < 4eð1� eÞ=s

�s2ðrÞ ¼ e2 where 4eð1� eÞ=s 6 r
ð33Þ

Then, Eq. (32) reduces to:

ks2;a ffi
16

9

e3

s2
ð1� eÞ ð34Þ

LPT – According to Hilfer (1996),Z 1

0

Z 1

0

6
kK

kðe; s; LÞlðe; s;LÞ
2

kK
eþ 4s2KLPT

deds ¼ 1 ð35Þ

For the RPC sample, kK is approximated as 5 and Eq. (34)
is solved using L = Ld.

High Reynolds number flow – The hydraulic radius the-
ory of Carman–Kozeny has been extended by Ergun
(1952) and Macdonald et al. (1979) to give
Table 2
Model predictions for the permeability

Model Symbol K (m2) c0 (–) Deviation
from Kref (%)

DPLS Kref 1.353 · 10�7 49.70 0.0
Conduit flow KC 2.873 · 10�7 22.46 +112.3
Carman–Kozeny KCK 1.149 · 10�7 56.15 �15.08
Fibrous beds, Davis KDa 7.388 · 10�8 87.33 �45.40
Fibrous beds, Chen KCh 7.897 · 10�7 8.170 +483.7
Fibrous beds, Kyan KKy 9.096 · 10�12 70,930 �99.99
Cylinder, parallel

flow
Kcp 9.379 · 10�8 68.79 �30.67

Spheres, packed bed KSP 5.980 · 10�8 107.9 �55.80
Cylinder, random

arrangement
Kcr 7.138 · 10�8 90.38 �47.24

Empirical, cellular
foams

KMo 4.7558 · 10�8 135.7 �64.85

Two-point
correlation bound

Ks2 7.650 · 10�7 8.433 +465.4

Two-point
correlation,
approximation

Ks2,a 1.445 · 10�7 44.65 +6.79

Mean survival time
bound

KDs 3.185 · 10�7 20.26 +135.4

LPT, Lp KLPT(Lp) – – –
LPT, Ld KLPT(Ld) 1.484 · 10�7 43.47 +9.68
F E ¼ 1:8
1� e

e3

1

d
ð36Þ

with d ¼ 6
A0

.
Ward (1964) recommends:

F w ¼
0:550ffiffiffiffi

K
p ð37Þ

Moreira et al. (2004) give an empirical correlation for F in
cellular foams:

F Mo ¼
1:8� 104ð1� eÞ

e3d�0:24
c

ð38Þ

All results are compiled in Tables 2 and 3. Table 2 lists the
predicted values of the permeability and of c0 (c0 = d2/K)
by the averaging models. Also listed is the ‘‘exact’’ refer-
ence value Kref obtained by DPLS (see next section) and
the relative difference with the predicted values by the aver-
aging models. Table 3 lists the predicted values of the Dup-
uit–Forchheimer coefficient and of c1 (c1 = dF). Also listed
is the ‘‘exact’’ reference value Fref obtained by DPLS (see
next section) and the relative difference with the predicted
values by the averaging models.

4. Direct pore-level numerical simulation (DPLS)

DPLS of fluid flow across the RPC sample is performed.
An in-house mesh generator for unstructured body-fitted
grids was developed for the present CFD study. This was
necessary because of the inability of commercial software
products to use directly the pore indicator function v(x)
and the excessively long computing times consumed for
the large meshes (>107 volume elements) that are required
with the complex RPC geometry. Our mesh generator ini-
tially covers the domain by a tetrahedral mesh where all
elements have the same shape. In a second step, the mesh
is iteratively refined close to the solid–fluid interface. The
refining algorithm is directly based on the solid-pore indi-
cator function, similar to the methodology described by
Bey (1995). In a final step, the mesh is fitted to the interface
by means of ‘‘rounding’’ and ‘‘cutting’’. ‘‘Rounding’’ refers
to projecting vertices to the interface if they are sufficiently
close to it, and ‘‘cutting’’ refers to replacing volume ele-
ments intersected by the interface with an adequate
arrangement of one or more smaller elements.

The ANSYS-CFX (ANSYS-CFX, 2006) finite volume
CFD code is used to solve the 3D incompressible



Fig. 7. Schematic of CFD domain and its boundary conditions.

Fig. 8. 2D projection of subset B fluid phase tetrahedral grid generated by
the in-house mesh generator.

1 Exact within the limits of the numerical truncation error (i.e., mesh
refinement) and the accuracy of geometrical representation (i.e., statistical
variations).
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continuity and Navier–Stokes equations in the pore-space.
The computational domain consists of a square duct that is
made up of an undisturbed inlet and exit region and an
intermediate test section containing the RPC’s 3D mesh
representation. A uniform inlet velocity and temperature
profile u0 = uD and T = T0, and an outlet pressure p0 are
given as boundary conditions. Further, the walls of the
duct have free-slip boundary condition, and the solid fluid
interface has a no-slip boundary condition. The boundary
conditions in the computational domain are depicted in
Fig. 7.

A small 60 · 60 · 60 voxels subset of the tomographic
dataset (subset A) is used to determine the necessary degree
of mesh refinement. Grids with a representative mesh
length scale in the range 16.07–128.6 lm were generated
and fluid flows at Reynolds numbers of 1 and 100 were sim-
ulated on each of the grids. A representative mesh length
scale of 64.3 lm (=0.0253dnom) is chosen for all further cal-
culations. The relative difference between the pressure drop
for the simulation of flow in subset A using the representa-
tive grid and that using the finest grid (with a representative
mesh length scale of 16.07 lm) was 1.3% at Re = 1 and
3.1% at Re = 100. Preliminary calculations are carried
out in a 240 · 240 · 240 voxel (=7.2 · 7.2 · 7.2 mm3

=2.835 · 2.835 · 2.835d3
nom) subset of the tomographic

data (subset B) using the representative length scale deter-
mined in subset A. Fig. 8 shows a 2D projection of the grid
for subset B.

Determination of K and F – A representative 800� 800�
280 voxelð¼ 24 � 24 � 8:4 mm3 ¼ 9:45 � 9:45 � 3:31d3

nomÞ
subset of the tomographic data (subset C) is used to gener-
ate a grid with a mesh length scale of 0.0253 dnom, resulting
in 1.24 Æ 107 tetrahedral elements. Periodicity is not
assumed. This elemental geometry is used to minimize
boundary effects since preliminary simulations showed that
the entry length is small (smaller than 0.1 dnom or
0.254 mm) compared to the sample thickness of 8.4 mm.
The non-dimensional pressure profile pdnom

luD
averaged over

the pore space in cross-sections perpendicular to the main
flow direction, is plotted in Fig. 9 for flows at Re = 0.2–
20. Deviations from the ideal linear pressure profile are
due to statistical fluctuations in the local porous medium
properties. The slope is equal to the non-dimensional pres-
sure gradient Ppg. As expected, the curves collapse to a sin-
gle curve for the limit of low Reynolds numbers, i.e. in the
Darcy regime. Hence, in the Darcy regime, the slope equals
�c0 (c0 = d2/K).

Flow calculations are carried out for Re = 0.2, 0.4, 1, 2,
4, 10, 20, 40, 100, and 200. A hybrid interpolation scheme
is used for the finite volume flux calculations. The mean
dimensionless pressure gradient Dpd2

nom=luD is plotted in
Fig. 10 as a function of the Reynolds number. As expected,
it is almost constant up to Re = 2 (Darcy regime), while the
influence of the Dupuit–Forchheimer term becomes pre-
dominant at high Reynolds numbers.

The dimensionless parameters c0 and c1 obtained via
least square fitting of Eq. (19), are c0,ref = 49.70 and
c1,ref = 1.128. The RMS of the fit is 1.8%. Thus, the ‘‘exact’’
reference values1 of the permeability and the Dupuit–
Forchheimer coefficient are Kref = 1.353 · 10�7 m2 and
Fref = 444.02.

The best model predictions are also indicated in Fig. 10.
In spite of its relative simplicity, the Carman–Kozeny
model (Eq. 25) estimates K with a relative error of
�15.08%. LPT using the saturation length scale (Eq. 35)



Fig. 11. Dimensionless temperature profile and local Nusselt number as a
function of the dimensionless distance from the RPC inlet, calculated by
DPLS at Pr = 1. The parameter is the Reynolds number: Re = 1, 10, and
100. Also plotted is the local Nusselt number for laminar flow in circular
tubes at Pr = 1, Re = 1, 10, and 100 (gray lines).

Fig. 9. Non-dimensional average pressure profile in the fluid phase along
main flow direction across the RPC sample, calculated by DPLS. The
parameter is the flow Reynolds number: Re = 0.2–20.

Fig. 10. Dimensionless pressure gradient as a function of the Reynolds
number, calculated by DPLS. Indicated are the best model predictions of
c0 and c1 using the porous medium properties determined by CT.
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estimates K with +9.68% relative error, but it reproduces
Kref for L*/dnom = 0.886. The two-point correlation bound
(Eq. 32) fails to give a reasonably estimate of c0, while its
simpler approximation (Eq. 34) predicts K within 6.79%
of Kref. The models based on cylinders in parallel flow
and on the conduit flow model predict K with a relative
error of �30.67% and +112.3%, respectively. Finally the
empirical model by Moreira (eq.) underestimates K by
64%. F is well predicted by the Ergun/Macdonald model
(Eq. 36) with an error 12.15%, whereas the value predicted
by Ward model (Eq. 37) results in a relative error of
+236.74% and the model by Moreira (Eq. 38) results in a
relative error of +117.2%.
Determination of the interfacial heat transfer coefficient-
The same sample and mesh as for the fluid flow calcula-
tions are used for the heat transfer calculation. In addition
to the boundary conditions imposed on the fluid flow, the
fluid inlet temperature is specified, the temperature of the
porous medium solid–fluid interface is specified as con-
stant, and the square duct walls are assumed adiabatic.
Simulations are carried out for 0.2 < Re < 200 and
Pr = 0.1, 0.5, 1, and 10. Viscous dissipation is neglected.

The local heat transfer coefficient averaged over the sur-
face area between locations z and Dz is defined as:

hDT lmðT sf ; T mfðzÞ; T mfðzþ DzÞÞ ¼
Z 1þDz

z
_q00dAsf ð39Þ

The local Nusselt number and dimensionless fluid tem-
perature T mf�T i

T sf�T i
are plotted in Fig. 11 as a function of the

dimensionless distance z/dnom for flows at Re = 1, 10 and
100, and for Pr = 1. As the fluid enters the porous medium,
the local Nusselt number quickly drops to an almost con-
stant value. Fluctuations are due to the inherently statisti-
cal nature of the porous geometry. Also plotted is the local
Nusselt number for laminar flow in a circular tube with
constant wall temperature and diameter dnom at Re = 1,
10 and 100, and for Pr = 1 (Kays and Crawford, 1993).
Whereas the mean Nusselt number depends on the Rey-
nolds number for RPCs, it is independent of Re for tubes
(Nu = 3.66).

The mean Nusselt number is shown as a function of Re
in Fig. 12, for various values of the Prandtl number. The
parameters of Eq. (22), obtained via least square fitting,



Fig. 12. Mean Nusselt number and fitted correlation as a function of
Reynolds number, calculated by DPLS. The parameter is the Prandtl
number. Also plotted are the empirical Nu correlations by Buck (2000) at
Pr = 0.1, 0.5, 1, 10 (thick, dashed lines), by Younis and Vikanta (1992) at
Pr = 0.7 (solid gray line), and for packed beds at Pr = 0.1, 0.5, 1, 10
(dashed lines).
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are d0 = 1.5590, d1 = 0.5954, d2 = 0.5626, d3 = 0.4720. The
constant d0 is necessary to determine the Nusselt number at
small Peclet numbers. For a single sphere d0, it approaches
2. Deviation from this value is due to the porous microge-
ometry and the choice of the reference length scale, dnom.
The RMS of the fit is 3.9%. For comparison, the empirical
Nusselt correlation for a 20 ppi Al2O3 ceramic foam with
an effective porosity of 80%, derived by Buck (2000) for
150 < Re < 500, is:

Nudh
¼ 0:2942Re0:7277

dh
Pr1=3 ð40Þ

where dh = 4e/s. Note that this correlation uses the hydrau-
lic diameter as the reference length scale. The empirical
Nusselt correlation for a 20 ppi cordierite foam, derived
by Younis and Viskanta (1992) for an air flow at
65 < Re < 457 is:

Nu ¼ 0:243Re0:42=ðs � dnomÞ ð41Þ

For comparison, results of an empirical Nusselt correlation
for packed beds given in Schlünder et al. (1984) are also
shown in Fig. 12:

Nubed ¼ ð1þ 1:5ð1� eÞÞNusphere

Nusphere ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nu2

lam þ Nu2
turb

q
Nulam ¼ 0:6643

ffiffiffiffiffi
Pr
p ffiffiffiffiffiffi

Re
p

Nuturb ¼
0:037Re0:8Pr

1þ 2:443Re�0:1ðPr2=3 � 1Þ

ð42Þ

Note that the original correlation is given for the volu-
metric heat transfer coefficient and has to be normalized
by s · dnom to arrive at comparable results. Given the fact
that the ceramic foams are from different manufacturers,
have different nominal pore diameters, and the ranges of
Re overlap only partly, the agreement between the DPLS
and the experimental results is reasonably good.

5. Conclusions

Tomography based determination of effective porous
media properties has been performed for reticulate porous
ceramics (RPCs). The structural properties of RPCs were
extracted from 3D tomographic data obtained with
30 · 30 · 30 lm3 digital resolution scans. It included, for
example, an effective porosity of 0.86 and an effective geo-
metrical specific surface area of 1048 m�1. The pore size
distribution, determined from the opening size distribution,
exhibited two distinct peaks that were identified with the
length scale of the small longitudinal pores central to the
strut material ð�ds ¼ 0:162 mm) and with the length scale
of the macroscopic pores ð�d ¼ 3:01 mm), respectively.
The fraction of unconnected pores was found to be negligi-
ble, while the mean macroscopic pore size was found to be
larger than the one specified by the manufacturer. The two-
point correlation function was determined using MC sam-
pling. Local geometry distribution and total percolation
probability, required for the LPT models, yielded percola-
tion and saturation lengths of 0.414 and 2.08 mm,
respectively.

A finite volume direct pore-level numerical simulation
(DPLS) was applied for Re = 0.2–200 using an unstruc-
tured tetrahedral mesh. The DPLS solution, which can be
considered as approaching the exact solution within the
limits of the numerical truncation error (i.e., mesh refine-
ment) and the accuracy of geometrical representation
(i.e., statistical variations), yielded a permeability of
1.353 Æ 10�7 m2. This reference value was compared to pre-
dictions from structural properties by applying selected
porous media flow models. For example, the classical Car-
man–Kozeny equation and the LPT predict the permeabil-
ity within 15% and 9.7% of the reference value,
respectively. In contrast, the rigorous bounds from the
mean survival time overestimates the permeability by
135%. The simple approximation of the two-point correla-
tion bound provides the most accurate estimation, with a
relative error of 6.8%. A reference value for the Dupuit–
Forchheimer coefficient of 444 m�1 was determined by
DPLS for high Reynolds numbers, while the Ergun/Mac-
donald model predicts it with a relative error of 12%.

Finally, a constant interface temperature Nusselt corre-
lation for the convective heat transfer coefficient was
derived based on DPLS for Re = 0.2–200, Pr = 0.1–10
and Pe > l. The Nusselt numbers obtained are within the
range of the experimentally based correlations for similar
materials. The local Nusselt number is almost constant
(with statistical fluctuations) everywhere in the medium
except at the short entry region.

Tomography based determination of the effective flow
properties of porous media by direct pore-level solution
of the fluid flow governing equations has been demon-
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strated for RPCs. The methodology allows for detailed
analysis of heat and fluid flow at the pore level and is not
constrained to parameter ranges imposed by purely exper-
imental determination. In the current study, results are lim-
ited to the RPC structure considered. The method is
applicable to any porous structure that can be resolved
tomographically. Morphological operations such as dila-
tion and erosion can be used to obtain effective transport
parameters as a function of porosity.
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